首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   27篇
  国内免费   4篇
工业技术   348篇
  2023年   4篇
  2022年   10篇
  2021年   23篇
  2020年   27篇
  2019年   27篇
  2018年   33篇
  2017年   29篇
  2016年   24篇
  2015年   14篇
  2014年   26篇
  2013年   36篇
  2012年   24篇
  2011年   26篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
11.
Software metrics rarely follow a normal distribution. Therefore, software metrics are usually transformed prior to building a defect prediction model. To the best of our knowledge, the impact that the transformation has on cross-project defect prediction models has not been thoroughly explored. A cross-project model is built from one project and applied on another project. In this study, we investigate if cross-project defect prediction is affected by applying different transformations (i.e., log and rank transformations, as well as the Box-Cox transformation). The Box-Cox transformation subsumes log and other power transformations (e.g., square root), but has not been studied in the defect prediction literature. We propose an approach, namely Multiple Transformations (MT), to utilize multiple transformations for cross-project defect prediction. We further propose an enhanced approach MT+ to use the parameter of the Box-Cox transformation to determine the most appropriate training project for each target project. Our experiments are conducted upon three publicly available data sets (i.e., AEEEM, ReLink, and PROMISE). Comparing to the random forest model built solely using the log transformation, our MT+ approach improves the F-measure by 7, 59 and 43% for the three data sets, respectively. As a summary, our major contributions are three-fold: 1) conduct an empirical study on the impact that data transformation has on cross-project defect prediction models; 2) propose an approach to utilize the various information retained by applying different transformation methods; and 3) propose an unsupervised approach to select the most appropriate training project for each target project.  相似文献   
12.
The key role of colour in ergonomics has been emphasized by a number of researchers and design professionals. Although several research studies have been published regarding the use of colour in ergonomics, there are still some areas that need to be considered. The issue of deciding a “colour of the year” is an example, which represents a new challenge for researchers in the field of ergonomics. This is of particular interest considering the fact that the nature of research on the selection of a “colour of the year” is generally based on user experience. This paper argues that ergonomics should play a more prominent role in this field to ensure better user experience and performance. This paper highlights specific areas that need further study and development.  相似文献   
13.
14.
15.

Hydropower energy generation depends on the available water resources. Therefore, planning and operation of the water resource systems are paramount tasks for energy management. Since reservoirs are one of the important components of water resources systems, extracting optimal operating policies for proper management of energy generated from these systems is an imperative step. Optimizing reservoir system operation (ORSO) is a non-linear, large-scale, and non-convex problem with a large number of constraints and decision variables. To solve ORSO problem effectively, a robust diversity-based, sine-cosine algorithm (RDB-SCA) is developed in the present study by introducing several strategies to balance the global exploration and local exploitation ability and to achieve accurate and reliable solutions. An efficient linear operation rule is coupled with the RDB-SCA to maximize the energy generation. The proposed method is then applied to a real-world, multi-reservoir system to extract optimal operational policies and, consequently, maximize the energy production. It is shown that the RDB-SCA is able to generate 24, 14, and 6% more energy than the original SCA, respectively for 2-, 3-, and 4-reservoir systems. The present findings are useful to suggest guidelines for efficient operation of hydropower multi-reservoir systems. This paper is supported by https://imanahmadianfar.com/codes.

  相似文献   
16.
17.
Membrane sealing effects of polymersomes made of tri-block copolymer, PEG-co-FA/SC-co-PEG, (PFSP) were studied on isolated spinal cord strips, PC12 cell lines and artificial bilayer following mechanical impact implemented by aneurism clip, sonication and electric shock, respectively. The homogeneity and size of PFSP, membrane permeability and cell viability were assessed by dynamic light scattering, LDH release and MTT assays. According to the results, the biocompatible, physico-chemical, size, surface charge and amphipathic nature of PFSP polymersome makes it an ideal macromolecule to rapidly reseal damaged membranes of cells in injured spinal cord as well as in culture medium. Compound action potentials recorded from intentionally damaged spinal cord strips incubated with PFSP showed restoration of neural excitability by 82.24 % and conduction velocity by 96.72 % after 5 min that monitored in real time. Thus, they triggered efficient instant and sustained sealing of membrane and reactivation of temporarily inactivated axons. Treatment of ultrasonically damaged PC12 cells by PFSP caused efficient cell membrane repair and led to their increased viability. The optimum effects of PFSP on stabilization and impermeabilizing of the lipid bilayer occurred at the same concentrations applied to the damaged cells and spinal cord fibers and was approved by restoration of membrane conductance and calcein release manifested by NanoDrop technique. The unique physico-chemical characteristics of novel polymersomes introduced here, make them capable to reorganize membrane lipid molecules, reseal the breaches and restore the hydrophobic insulation in spinal cord damaged cells. Thus, they might be considered in the clinical treatment of SCI at early stages.  相似文献   
18.
Simulations of biological macromolecules have evolved tremendously since the discoveries of the 1970s. The field has moved from simple simulations in vacuo on picosecond scales to milliseconds of accurate sampling of large proteins, and it has become a standard tool in biochemistry and biophysics, rather than a dedicated theoretical one. This is partly due to increasing computational power, but it would not have been possible without huge research efforts invested in new algorithms and software. Here, we illustrate some of this development, both past and future challenges, and in particular, discuss how the recent introduction of modern ensemble methods is breaking the trend of ever-longer simulations to instead focus on throughput and sampling. This has not only helped simulations become much more accurate, but it provides statistical error estimates, which are critical, as simulations are increasingly used to predict properties that have not yet been measured experimentally.  相似文献   
19.
Alarm flooding is one of the main problems in alarm management. Alarm flood pattern analysis is helpful for root cause analysis of historical floods and for incoming flood prediction. This paper deals with a data driven method for alarm flood pattern matching. An alarm flood is represented by a time-stamped alarm sequence. A modified Smith–Waterman algorithm considering the time stamp information is proposed to calculate a similarity index of alarm floods. The effectiveness of the algorithm is validated by a case study on actual chemical process alarm data.  相似文献   
20.
Microneedles are small needle‐like structures that are almost invisible to the naked eye. They have an immense potential to serve as a valuable tool in many medical applications, such as painless vaccination. Microneedles work by breaking through the stratum corneum, the outermost barrier layer of the skin, and providing a direct path for drug delivery into the skin. A lot of research has been presented over the past two decades on the applications of microneedles, yet the fundamental mechanism of how they interact, pressure, and penetrate the skin in its native state is worth examining further. As such, a major difficulty with understanding the mechanism of microneedle–skin interaction is the lack of an artificial mechanical human skin model to use as a standardized substrate. In this research news, the development of an artificial mechanical skin model based on a thorough mechanical study of fresh human and porcine skin samples is presented. The artificial mechanical skin model can be used to study the mechanical interactions between microneedles and skin, but not diffusion of molecules across skin. This model can assist in improving the performance of microneedles by enhancing the reproducibility of microneedle depth insertions for optimal drug delivery and biosensing.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号